Classification of Finite-dimensional Semisimple Lie Algebras

نویسندگان

  • DUSTAN LEVENSTEIN
  • D. LEVENSTEIN
چکیده

Every finite-dimensional Lie algebra is a semi-direct product of a solvable Lie algebra and a semisimple Lie algebra. Classifying the solvable Lie algebras is difficult, but the semisimple Lie algebras have a relatively easy classification. We discuss in some detail how the representation theory of the particular Lie algebra sl2 tightly controls the structure of general semisimple Lie algebras, which enables their classification via root spaces, which we can see is a quite tractable problem. We also discuss Lie correspondence connecting the theory of Lie algebras with that of Lie groups, which is where applications, e.g., in particle physics, tend to arise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 5: Semisimple Lie Algebras over C

In this lecture I will explain the classification of finite dimensional semisimple Lie algebras over C. Semisimple Lie algebras are defined similarly to semisimple finite dimensional associative algebras but are far more interesting and rich. The classification reduces to that of simple Lie algebras (i.e., Lie algebras with non-zero bracket and no proper ideals). The classification (initially d...

متن کامل

Lecture 6: Kac-moody Algebras, Reductive Groups, and Representations

We start by introducing Kac-Moody algebras and completing the classification of finite dimensional semisimple Lie algebras. We then discuss the classification of finite dimensional representations of semisimple Lie algebras (and, more generally, integrable highest weight representations of Kac-Moody algebras). We finish by discussing the structure and representation theory of reductive algebrai...

متن کامل

Structure and Representation Theory of Infinite-dimensional Lie Algebras

Kac-Moody algebras are a generalization of the finite-dimensional semisimple Lie algebras that have many characteristics similar to the finite-dimensional ones. These possibly infinite-dimensional Lie algebras have found applications everywhere from modular forms to conformal field theory in physics. In this thesis we give two main results of the theory of Kac-Moody algebras. First, we present ...

متن کامل

On the Quotients of the Inverse Limit of Finite Dimensional Lie Algebras

We prove that if L = lim ←−Ln (n ∈ N), where each Ln is a finite dimensional semisimple Lie algebra, and A is a finite codimensional ideal of L, then L/A is also semisimple. We show also that every finite dimensional homomorphic image of the cartesian product of solvable (nilpotent) finite dimensional Lie algebras is solvable (nilpotent). Mathematics Subject Classification: 14L, 16W, 17B45

متن کامل

A Note on the Closed Ideals of Prosemisimple Lie Algebras

We extend the basic fact that every ideal of a finite dimensional semisimple Lie algebra has a unique complement to the case of closed ideals of prosemisimple Lie algebras. We prove that if A is a closed ideal of a prosemisimple Lie algebra L = lim ←−−Ln (n ∈ N), where the Ln are finite dimensional semisimple Lie algebras, then there exists a unique ideal B of L such that L = A ⊕ B. Mathematics...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017